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Abstract. We show that the Wigner formalism in quantum optics is
capable of interpretation as a classical wave field with the addition of a zero-
point contribution. We assume that only those states whose Wigner function
is positive are real states, and show that this is not a serious restriction. Phe-
nomena currently classified as nonlocal in the standard description of quan-
tum optics may then be understood as arising from correlations between
stochastic Maxwell fields. In particular we establish that “entanglement”
between pairs of photons with a common origin, in an atomic cascade or a
nonlinear crystal, occurs because the two light signals have amplitudes and
phases, both below and above the zeropoint intensity level, which are cor-
related with each other. An essential feature of the Wigner reformulation
is that the normal-ordering theory of detection, which has its origin in the
collapse of the wave function, must be replaced by a theory which, with rea-
sonable efficiency, separates a signal from the zeropoint background. That
requires a resolving time window of an appropriate length. The theory ex-
plains, in a local manner, the violation of homogeneous Bell inequalities in
all optical tests which have been performed. We predict a new phenomenon
in nonlinear crystals, namely Spontaneous Parametric Up Conversion; it has
been given no explanation within conventional quantum optics.

1 Introduction

At the 1927 Solvay conference Einstein entered his objection to the new
Quantum Mechanics (QM). That objection was to what was known as “col-
lapse of the wave packet”, and it was subsequently clarified in two articles[1,
2]. He showed that QM is nonlocal, and therefore contrary not only to his
Relativity Theory, but also to all hitherto accepted norms of scientific expla-
nation.

Bohm[3] simplified and sharpened the thought experiment of Einstein,
Podolsky and Rosen[1] (EPR). Considering this version of EPR, Bell[4] showed
that correlations between the internal variables of a pair of separated spin-1/2
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particles with a common origin, according to any local theory, must satisfy
a certain inequality, which we shall call an Inhomogeneous Bell Inequality
(IBI), and that there are circumstances, according to QM, in which an IBI
is violated.

The possibility of observing such violations gave rise to a great deal of
experimental activity. Curiously, the only useful experiments have been
made[5, 6, 7, 8, 9, 10] with pairs of light signals1, the light photons being inter-
preted as EPR particles, and the internal variables being their polarizations.
Photons are considered to have spin one, but the absence of a longitudinal
spin component means that there are only two independent photon modes
of given momentum, so observing their polarization is considered to be like
observing a spin component of a spin-1/2 particle.

One would expect considerable care to be exercised in analyzing such ex-
periments, since the corpuscularity of photons is very problematic. This was
emphasized by Max Planck[12], widely considered as the creator of Quan-
tum Theory, as early as 1907, but also by his then young opponent Albert
Einstein, who in 1951 remarked[13] “Nowadays every Tom, Dick and Harry
thinks he knows what a photon is, but he is mistaken”. More recently Willis
Lamb[14] has said people should be required to have a licence before being
allowed to speak of photons. Clearly Lamb did not have the editors of Phys-
ical Review Letters in mind as the appropriate licensing authority, because,
since 1982, virtually all the articles on Bell experiments, published there
and in other authoritative journals, have simply assumed that photodetec-
tors are devices which treat all incident photons on an equal basis. Such a
“fair sampling” assumption is now so standard that it is not acknowledged at
all any more, yet its imposition effectively limits the range of local theories
to those which accept the corpuscularity of the light field. That means, in
particular, that Max Planck’s own description, which we shall review in this
article, and which we shall show to be consistent with locality, is ruled out
of consideration.

Before 1982 the intellectual climate was more enlightened. In early de-
signs of their experiment of 1973, Clauser and Freedman used Fair Sam-
pling in the form of the Clauser-Horne-Shimony-Holt (CHSH)[15] hypothesis.
However, shortly afterwards Clauser and Horne (CH)[16] made the impor-

1Proposals have been made for experiments with atoms[11], but they have not so far
been realised. Some attempts to test Bell inequalities have been made with gamma rays
from positronium decay, and with protons[6]. In all of these cases the inability to make
unambiguous spin measurements has made a true test of IBI impossible.
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tant distinction between inhomogeneous (IBI) and homogeneous (HBI) Bell
inequalities. Testing an IBI requires that we compare certain coincidence
rates in two separated detectors with the singles rates of the two detectors.
Nobody needed to actually perform such an experiment, because singles rates
with all detectors, before 1974 and also since 1974, are at least ten times all
the coincidence rates. So, taking into account this low detector efficiency,
the QM prediction actually satisfies the IBI. To arrive at an experimental
design in which the QM prediction violates IBI we require detectors whose ef-
ficiency exceeds 67%. The authors have been repeatedly assured, since 1982,
that such a technological advance is just around the corner, but a recent
article[17] by one of the principal participants in the Aspect[7, 8] series of
experiments seems to indicate, twenty years on, that the effort to achieve it
has now been abandoned.

Clauser and Horne recognized that, because of the limitations of light de-
tectors, an experimental test between quantum optics and its putative local
competitors was possible only so long as these competitors accepted some
restriction on the range of local theories to be considered. They introduced
the No Enhancement Hypothesis (NEH), which is that a given light signal,
originating in an atomic cascade for example, has a certain probability of ac-
tivating a detector, and that, if a polarizer is interposed between the cascade
and the detector, that detection probability cannot increase. Given NEH,
we may derive an HBI, between coincidence rates with polarizers in place
and coincidence rates without one or both polarizers, and this was made the
basis of the experimental procedure, used by Clauser and Freedman.

In the latter experiment the HBI was found to be violated. To us the
conclusion to be drawn is obvious; NEH plus locality cannot be true, so,
since locality (or, what is the same thing, causality) is the basis of all science,
NEH is not true. So the opposite of NEH is true, that is enhancement is a
new phenomenon discovered by Clauser and Freedman. Let us be explicit.

In the total set of signals from an atomic cascade there is a
subset whose detection probability increases as a result of passing
through a linear polarizer.

Stochastic optics[18, 19] is a form of semiclassical radiation theory. As in
QM, there is a wave field [E(x, t) , B(x, t)]. It satisfies the Maxwell propaga-
tion equation, which is the Schrödinger equation for this particular field; so
first quantization of the light field goes back to the 1870s! In contrast with
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the Schrödinger equation for massive particles, there is no problem in treat-
ing the Maxwell field as a real object; it propagates, in all media, at velocity
not greater than c. We claim that second quantization of the light field is
equivalent to taking account of the fluctuations of that field, that is recogniz-
ing its stochastic nature. Whether light detectors are activated, or not, in an
interval 0 ≤ t ≤ τ , depends on the value of a certain quadratic functional of
E, involving an integration from 0 to τ . We shall say more about the precise
form of the quadratic functional in the following sections. Essentially it is a
time integral of the intensity within an appropriate frequency range.

The stochastic element was introduced into modern optics by Brown and
Twiss[20]. They showed that a thermal source can be represented as a gaus-
sian stochastic process, and that a photodetector, operated with a very long
(∼ 5 × 103s) detection window, converts the light field into a current field.
Then the correlation between the currents in two separated detectors may
be obtained as a fourth-order correlation of the incident field, which, from
the assumed gaussian property of the latter, reduces to a product of two
field correlations. This technique forms the basis of a method for measuring
stellar diameters.

The analysis is not always so simple. There is a category of light field,
which is nowadays called nonclassical, exhibiting new phenomena such as
antibunching[21] and anticorrelation[22, 23]. We have shown that the key
to a local explanation of these phenomena also explains the enhancement
phenomenon, namely the zeropoint field (ZPF), introduced into radiation
theory by Max Planck[24] in 1911, and revived in more recent times under
the title of Stochastic Electrodynamics[25, 26, 27] (SED). Originally SED was
an attempt to explain atomic structure as an interaction of point electrons
with the ZPF. Though we were participants in this ambitious programme,
we consider that it has failed. Nevertheless, a semiclassical version of it, in
which quantized atoms interact with a classical Maxwell field which includes
“vacuum” fluctuations, survives, and that is what we shall describe in the
following sections. The notion of real “vacuum” fluctuations is also a feature
of some presentations of Quantum Electrodynamics (QED)[28], and has been
used to explain such phenomena as spontaneous emission, the Casimir effect
and the greater (that is, nonrelativistic) part of the Lamb shift.

A correlated “nonclassical” light field is generated when two modes of the
field are coupled, so that their amplitudes cease to be independent. This may
occur as a result of their interaction with a nonlinear polarizable medium,
when the latter is pumped by a laser. Examples of such a medium are an
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atom which has been pumped into an excited state, from which it decays,
either by resonance fluorescence or by a three-level cascade process, and a
certain category of optically active crystal. The input field, for any of these
systems, may be modelled, as we shall show in the following sections, by the
(idealized) purely sinusoidal laser plus the (gaussian) zeropoint field; we shall
show that the output then exhibits all the “nonclassical” features, including
enhancement, that we mentioned above.

A novel feature of stochastic optics[18, 19] (SO), which is the term we
introduced for the semiclassical version of SED, is that the detection proba-
bility for any mode of the field is not linear in that mode’s intensity. Because
there is a considerable amount of energy in the ZPF, and because the dark
rate, that is the rate at which the detector fires in the absence of a signal,
is very small, there must be a threshold intensity, corresponding to the ZPF
intensity, below which the detector does not fire. Such a subtraction is made
formally in standard quantum optics, by what is called the normal ordering
procedure, but what is required in order to complete the SO programme is
a theory of detection which treats dark-rate events and signal detections on
an equal footing. Note that the nonlinearity of the detection process already
means that we have gone beyond the constraints on classical fields imposed
by, for example, Clauser[22] and Grangier, Roger and Aspect[23] in their
discussions of the anticorrelation phenomenon.

The formulation of a detection theory which covers all the situations we
have listed is a formidable problem, and we have not yet been able to complete
it. Such a theory will have to contain, as adjustable parameters, the threshold
of the detector, its resolving time window, its range of frequency filtering, and
the lens system used to focus the signal on to the detecting material. Such
progress as we have made is mainly for detectors of long resolving window;
this may be taken to include the human eye, whose resolving time is around
0.2s. Thus our theory of detection is able to explain[29] the visibility of stars
in the sky, against a very large ZPF background. A phenomenon which may
be observed with a long resolving window, and which has not been predicted
by conventional quantum optics, is Spontaneous Parametric Up Conversion
(SPUC), to be described in Section 4 below.
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2 Wigner representation of the light field

The states which form the basis for the quantum optical description of the
light field are the Fock states, which are generated by applying the creation
operators â†k,λ to the hilbert-space vector

|0〉 =
∏
k,λ

|0k,λ〉 , (1)

which represents the vacuum. The whole state space is then spanned by the
set of vectors

|{nk,λ}〉 =
∏
k,λ

|nk,λ〉 =
∏
k,λ

(nk,λ!)
−1/2(â†k,λ)

nk,λ|0k,λ〉 , (2)

which represents a state having nk,λ photons of wave number k and polar-
ization λ. The latter index takes either the value 1 or 2. The most general
pure state is a superposition of these, that is

|Φ〉 =
∑

φ({nk,λ})|{nk,λ}〉 ,
∑
|φ|2 = 1 . (3)

The Wigner function of this state is defined as

WΦ(α) = WΦ({αk,λ}) = 〈Φ|Ŵ ({αk,λ})|Φ〉 , (4)

where

Ŵ ({αk,λ}) =∏
k,λ

1

π2

∫
eβk,λ(â†

k,λ
−α∗

k,λ)−β∗
k,λ(âk,λ−αk,λ)d2βk,λ . (5)

For instance, the Wigner function of the vacuum is

Wvac(α) =
∏
k,λ

(2/π)e−2|αk,λ|2 . (6)

The full set of quantum states is obtained by extending the set |Φ〉 to mixtures
of the form

ρ =
∑
|Φ〉PΦ〈Φ| , 0 ≤ PΦ ≤ 1 ,

∑
PΦ = 1 . (7)
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The Wigner function in nonrelativistic QM[30] plays the role of a pseudo-
probability distribution; its marginals with respect to position and momen-
tum separately give the quantum probabilities for each of these variables,
but the function itself is not positive definite. There are great difficulties in
interpreting the Wigner function as a true probability distribution in QM.
Nevertheless we propose that for the light field, which satisfies the linear
equations of Maxwell, the Wigner function is positive for all physically re-
alizable states, and therefore provides a classical stochastic interpretation of
quantum optics.

2.1 Some simple states

In this subsection we consider the idealized situation where only a single
mode of the field contains photons, so that the set {nk,λ} contains only
a single nonzero member, and the number states are designated simply
|0〉, |1〉, |2〉 . . .. An important state is the coherent, which is an idealized
form of the continuous-wave laser, namely

|α′〉 = eα′â†−α′∗â|0〉 =
∑
n

α′n
√

n!
e−|α′2|/2|n〉 . (8)

Its Wigner function is

Wα′(α) = (2/π)e−2|α−α′|2 . (9)

A squeezed version of this state is given by

|α′, s〉 = es(â†2−â2)|α′〉 , (10)

where s is taken as real, and its Wigner function is, putting α = β + iγ, α′ =
β′ + iγ′,

Wα′,s = (2/π) exp[−2e2s(β − β′)2 − 2e−2s(γ − γ′)2] (11)

Note that both of these states have positive Wigner functions. That is
not the case with the number states. For example the one-photon state |1〉
has the Wigner function

W1(α) = (4|α|2 − 1)W0(α) , (12)
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where W0(α) is the vacuum Wigner function for a single mode, that is

W0(α) = (2/π)e−2|α|2 . (13)

In all of the above examples, the full Wigner function is given by the prod-
uct of the single-mode function with W0(αk,λ) for each of the “unoccupied”
modes.

2.2 What is a classical state?

At the basis of our semiclassical description is the proposal that W0(αk,λ) is
a real distribution of amplitudes αk,λ. Indeed it is precisely the distribution
proposed by Max Planck in his original formulation of the ZPF, whereby the
electric field in a cube of side L is represented as a stochastic field

E(r,t) = E(+)(r,t) + E(−)(r,t) ,

E(−)(r,t) = [E(+)(r,t)]∗ ,

E(+)(r, t) =
∑
k,λ

√
h̄|k|
2ε0L3

αk,λuk,λe
ik.r−|k|ct , (14)

where uk,λ is a unit vector giving the direction of polarization. All of the
random variables αk,λ have nonzero variance; that is why we put “unoccu-
pied” in quotation marks; the absence of photons does not mean the absence
of radiation!

The expression for E as a stochastic field is formally almost identical with
that used in quantum optics, where the corresponding quantity Ê = Ê(+) + Ê(−),
with Ê(−) = [Ê(+)]†, is an operator, and the random mode amplitudes are re-
placed by creation operators, that is

Ê(+)(r, t) =
∑
k,λ

√
h̄|k|
2ε0L3

âk,λuk,λe
ik.r−i|k|ct . (15)

In order to discuss the classical nature, or otherwise, of various quan-
tum states, we shall introduce a new category. We follow the convention of
quantum optics in calling “classical” those states which have a nonsingular
Glauber P-representation

ρ =
∫
|α′〉P (α′)〈α′| d2α′ , (16)
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where |α′〉 is a coherent state. (We are keeping within the single-mode set
for the moment). The Wigner function of this state is

Wρ(α) = (2/π)
∫

P (α′)e−2|α−α′|2 d2α′ . (17)

Since this is positive, it follows that all classical states have positive Wigner
functions. We insist that the ZPF oscillations are real, so we need a name
for those states having positive Wigner functions. We propose to call them
“real”, because all phenomena involving such states may be interpreted in
a local realist manner, as we shall show in subsequent sections. So, in our
understanding, the squeezed state described in the previous subsection is real.
The singular character of the P-representation for this state arises because
the variances of certain ZPF amplitudes have been depressed below their
normal free-space value. The classification of states is summarized[31] in
Fig.1, where we depict the set of classical states by a small circle, contained
within the wider, real set. The latter has an overlap with the quantum states,
which we designate as laboratory (or LAB) states. There are quantum states,
like all of the number states, which lie outside even our real set, and we have
placed the representative point for a single-photon state at A in the figure.
As is shown by eq.(13), this state lies outside the real set, but the squeezed
state lies within it.

A second class of nonclassical but real states are those which exhibit
antibunching, that is a sub-Poissonian pattern of counts in a photodetector

〈n2〉 − 〈n〉2 = α〈n〉 , (18)

with α < 1. These states were discussed in Ref.[18]; there is no difficulty in
explaining their counting statistics, on the basis of a source whose intensity
shows a regular oscillatory behaviour, as is observed, for example in resonance
fluorescence, as studied by Kimble and Mandel[21]. So this set of states is
also real.

Now we are in a position to show what characterizes, physically rather
than formally, the classical states[32]. They are states for which there is a
signal, above the ZPF, which is independent of the ZPF. In contrast, non-
classical real states are those for which a separation into signal and ZPF is
not possible. A state is classical if the total field E(r,t) can be decomposed
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into two independent parts, E0(r,t) and E1(r,t) representing ZPF and signal
respectively. When this is the case, all optical phenomena are associated with
the signal alone, and the ZPF may be ignored altogether, as is the situation
in classical optics. The independence of the fields implies an independence
of the corresponding amplitudes, {α0

k,λ} and {α1
k,λ} in expansions like (14).

If the probability densities of these are W0({α0
k,λ}) and W1({α1

k,λ}), then the
density of the total field will be their convolution, that is

W ({α}) =
∏ ∫

W1({α′})W0({α− α′})d2Nα′ , (19)

which is identical with (17) if we identify W1(α) with P (α). So, to summarize,
the existence of a positive P-function is a necessary and sufficient condition
for being able to decompose the field into independent signal and ZPF parts.

We now turn to a central problem of our programme, namely the Wigner
description of number states like A. Taking into account the complete set of
modes, including the “unoccupied” ones, the Wigner function eq.(13) may
be written as

W1(α) = (4|αk,λ|2 − 1) W0(α) . (20)

Of course this is not always positive. However, it is necessary to bear in
mind that the experimental situations[22, 23], in which something like a one-
photon state has been reported, must necessarily involve the observations of
wave packets rather than single-mode signals. Indeed, the latter, which fill
the whole of space and time, are not at all physical objects. A wave packet
has the hilbert-space representation

|ξ(x)〉 =
∑
k,λ

ξk,λe
ik.xa†k,λ|0〉 , (21)

where {ξk,λ} are a set of random, but not independent variables satisfying∑
k,λ

|ξk,λ|2 = 1 , (22)

and which, furthermore, are nonzero only for a set of vectors k falling within
a small ellipsoidal region centred at k′. It is also necessary to bear in mind
that there is no way of controlling the moment at which such a packet is
emitted, in the atomic-cascade situation used for such experiments, and this
may be taken into account by forming an appropriate mixture[32, 33] of such
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wave-packet states. We have been able to show that, for any one-photon
state, like the one designated as A in Fig.1, a corresponding mixed state,
designated B, may be constructed. The latter state lies precisely on the
boundary of the (Wigner) classical set, and the size of the ellipsoidal region
is consistent with the experimental variation of k.

3 A realist theory of detection

3.1 Quantum theory of detection

In order to complete the Wigner function approach to quantum optical ex-
periments we must give an expression for the counting rate in terms of the
radiation arriving at a detector. The hilbert-space, or photon, formalism is
based on normal ordering, that is putting creation operators to the left and
annihilation operators to the right. We begin with the idealized case where
the radiation field is represented by a single mode. Then, working in the
Heisenberg picture, the singles detection probability per unit time is

pq ∝ 〈Φ|b̂†k(t)b̂k(t)|Φ〉
= 1

2
〈Φ|

[
b̂†k(t)b̂k(t) + b̂k(t)b̂

†
k(t)− 1

]
|Φ〉

=
∫

W ({αk})
[
|βk(t; αk′)|2 − 1

2

]
d2αk′

≡ 〈|βk|2 − 1
2
〉

W
(23)

where | Φ〉 is the initial state of the radiation, W (αk′ , α∗
k′) the corresponding

Wigner function, and b̂k(t) ( b̂†k(t) ) the time-dependent creation (annihila-
tion) operator, βk and β∗

k being the corresponding amplitudes in the Wigner
formalism. The first equality derives from the use of the commutation re-
lations and the second is the passage to the Wigner representation. In the
latter expression we have exhibited the dependence of the amplitude βk on
time and on the initial amplitudes, αk′ ,. The symbol 〈〉

W
means the aver-

age weighted with the Wigner function. In what follows we shall omit the
subindex W .

In the general case of many modes, from (14) it is straightforward to get,
for a point-like detector [34],

pq(r, t) ∝
∫

W ({αk}) [I (r, t; {αk})− I0] d
2Nαk

= 〈I − I0〉 , (24)
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where
I(r, t; {αk}) = cε0E

+(r, t; {αk})E−(r, t; {αk}) (25)

is the intensity for a realization of the field (14) at the position and time
(r, t), and W ({αk}) is the Wigner function of the initial state. N is the
number of modes (we shall later pass to the limit N → ∞) and I0 is the
mean intensity of the ZPF. We use the calligraphic I for the random variable
intensity in order to distinguish it from nonrandom averages like I0. Then
eq.(24) may be interpreted as stating that the detector has a threshold so
that it only detects the part of the field which is above the average ZPF. Two
remarks are in order: a) The intensity I contains a (possibly complicated)
dependence on the initial amplitudes of all radiation modes, but I0 is a
constant (compare with (23)). We may interpret this by saying that the
detector removes the ZPF. The quantum rule (24) is just to subtract the
mean, a formal procedure which cannot be physical because it gives rise to
“negative probabilities”, as we shall discuss below. b) Strictly the integral
in (24) should involve all radiation modes, but some cut-off frequency is
required in order to avoid divergences. Furthermore, most of the radiation
modes are usually not “activated” (in common quantum language we say
that they contain no photons) and therefore they may be ignored, that is the
contribution of these modes to the average 〈I〉 equals the contribution to I0.
Ignoring them does not change the difference 〈I − I0〉. We shall call those
which cannot be ignored the relevant modes.

In the same way we may obtain the coincidence detection probability for
two detectors, placed at (r1, t1) and (r2, t2). We get from (14)

pq
12(r1, t1; r2, t2) ∝

∫
W ({αk}) [I (r1, t1; {αk})− I10]

× [I (r2, t2; {αk})− I20] d
2Nαk

= 〈(I1 − I10)(I2 − I20)〉 . (26)

In writing I10 6= I20 we are emphasizing that the thresholds of the two de-
tectors may be different.

The relevant question for us is whether expressions (24) and (26) are
suitable for a local realist interpretation. The answer is negative because I−
I0 is not always positive and therefore cannot be interpreted as a probability.
The problem is not the huge value of the zeropoint energy (the ZPF intensity
is about 105w/cm2 in the visible range), because the threshold intensity I0

cancels precisely that intensity. The problem lies in the fluctuation of the
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intensity. For the weak light signals of typical quantum-optical experiments
the fluctuations of I may be such that I < I0. Let us study whether this
problem is real or is just a consequence of some approximations used in the
standard quantum theory of detection.

We shall begin by showing that the removal of some idealizations involved
in eqs. (24) or (26) alleviates the problem. Firstly these equations were
derived including only modes corresponding to a beam of nearly parallel wave
vectors. If this is not the case we should write eq.(26) using the Poynting
vector rather than the intensity. The direction of the Poynting vector of the
signal is well defined whilst that of the noise (the ZPF) is random with zero
mean. This makes the discrimination easier. More important is the fact that
the detection probability does not depend on the instantaneous intensity at
a point. The quantum detection theory involves a hamiltonian which takes
into account the interaction between the detector and the radiation field,
whence the photon counting rate is calculated using first order perturbation
theory. For the sake of simplicity let us consider a model detector consisting
of a single atom, initially in the ground state. The interaction hamiltonian
may be written

Hint =
∑
j

∑
k

ηjk

(
σ̂oj b̂k + σ̂job̂

†
k

)
, (27)

where σ̂0j (σ̂j0) is the raising (lowering) operator for the atom to pass from
the ground state 0 to the state j (from j to 0) and ηjk are some constants
related to the detection efficiency. In the model a detection event, that is a
count, happens when the atom becomes excited. The probability of a count is
calculated using first order time-dependent perturbation theory and involves
a time integral, whence one derives a probability of detection per unit time.
For details see any book on quantum optics, e.g.[35].

The point is that the quantum theory of detection, derived from time-
dependent perturbation theory, necessarily involves an integral over a finite
(non-zero) time interval, T . The standard practice is to divide the counting
probability by T in order to calculate the counting probability per unit time.
However, in order to simplify the calculation, the limit T→∞ is used. Con-
sequently the interval T does not appear in the quantum formula, but we
stress that the standard procedure is accurate only if T is large. Also actual
detectors are macroscopic bodies containing many atoms, and the probabil-
ity of a count should involve a summation over all atoms, or equivalently
a spatial integration. As a result, accurate quantum detection probabilities
per unit time will not be of the form of eqs.(24) or (26), but should rather
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be given by

pq
i =

∫
W ({αk})Qi({αk}, t)d2Nαk , (i = 1, 2) ,

pq
12 =

∫ t+∆t

t
dt′

∫
W ({αk})Q1({αk}, t)Q2({αk}, t′)d2Nαk ,

Qi =
ηi

hνiT

∫ t

t−T
dt′

∫
d2ri [Ii({αk}, ri, t

′)− Ii0] . (28)

We stress that there are two different time intervals here, which should not be
confused. ∆t is a coincidence window defined by some electronic device with
the purpose of recording counts of the second detector only during the time
interval ∆t after a count is produced in the first detector. On the other hand
T is a time interval which appears when using time-dependent perturbation
theory (in standard derivations the limit T→∞ is taken, as said above). In
addition to the integration over T , we have included an integration over the
surface aperture of the detector; the integration over the depth of the active
detection zone being absorbed in the constant ηi. We have divided by the
typical energy of one “photon” so that pq

i and pq
12 may be identified with

the measurable counting rates. Then ηi is the quantum efficiency of the i’th
detector.

Qi is a probability per unit time, and is therefore positive. It is defined
by an integral over an interval previous to t in order to guarantee causal
behaviour: the probability of a count within a small time interval around t
should depend on the radiation entering the detector before (not after!) the
time t.

The difficulties for a local realist theory of detection are alleviated by the
time and space integrations in the definition of Qi in (28). Indeed, the fluc-
tuations of the intensity are strongly reduced by averaging over space-time
regions, as the Heisenberg (uncertainty) relations show. But we can guar-
antee the positivity of Qi only in the limit of infinitely wide detection time
intervals. This is nonphysical but it corresponds precisely to the standard
quantum procedure of taking T →∞.

There is still another correction required by a more accurate quantum
theory of detection, namely going to higher orders of perturbation theory.
This will certainly destroy the linearity of eqs.(28). Indeed these latter equa-
tions predict a counting probability which is linear in the intensity above the
ZPF precisely because they use first order, that is linear, perturbation theory.
It is frequently claimed that the linearity of the response is a straightforward
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consequence of the quantum theory of detection and that deviations from
linearity in actual experiments are defects of the present technology of detec-
tors. We see that, on the contrary, nonlinearity is a necessary feature of an
accurate quantum theory of detection in which higher order perturbations
are taken into account.

If we want to go beyond first-order perturbation theory, we need a more
realistic model of a detector. Indeed we should consider at least a three-state
– rather than a two-state – detection system if a count is to give rise to
a macroscopic electric current. For instance, in a detector working via the
photoelectric effect, the absorption of a photon liberates an electron which
is then accelerated by an external potential. The collision of the accelerated
electron with an appropriate device produces an avalanche giving rise to
the macroscopic electric current. We have here three states: 1) the electron
bound to the atom or to some part of a solid body, 2) the free electron, almost
at rest, produced by photoelectric effect, and 3) the electron after being
accelerated and after having lost some energy by collisions. A schematic
picture of the potential seen by the electron is shown in Fig.2, where we
represent the three states by horizontal lines. The point is that, in view of
the above arguments, any accurate quantum theory of detection will predict
a) A nonlinear response of the detector to the incoming radiation, and b)
some nonthermal dark rate due to direct transitions from state 1 to state 3
by tunnelling.

The question is whether an accurate quantum theory of detection, when
formulated in the Wigner representation, can be interpreted in a local realistic
manner. We conjecture that this is the case. We shall not investigate it
further here, though we have studied elsewhere [36] a three-state quantum
detection model. Instead we shall simply give the essential properties of local
realist detection models compatible with the assumption that the ZPF is real
and has the same nature as the signals. A particular model along these lines
has been proposed elsewhere [37] , based on an earlier one [29]. This will
allow us to derive some general constraints which are not predicted by the
standard linear quantum theory of detection, but which we conjecture would
be predicted by a more accurate quantum treatment.
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3.2 Local realist detection models

We now set out the basic points of any local realist model of detector for an
incoming light beam having frequencies in the interval (ωmin, ωmax) . If τ is
the coherence time of the beam this means

δω ≡ ωmax − ωmin ≈ 2π/τ . (29)

1. We shall assume that the detection probability depends on a quantity
I defined as a functional of the radiation entering the detector during some
time interval (t− T, t), that is

I = I [E(r, t′),B(r, t′)] , r ∈V , t′∈(t− T, t) , (30)

where V is the relevant volume of the detector. The restriction of the domains
of r and t give the locality condition. The quantity I will be called the
effective intensity and should be as close as possible to the actual intensity
I of the radiation within the relevant modes. That is, the functional (30)
should remove the radiation in most modes not carrying any signal, but
retain the radiation coming in the relevant modes. Finding an appropriate
functional is a difficult task (see, e.g. a particular functional in [37].)

2. We assume that the detection probability per unit time is given by
eq.(28) but with the quantity Q replaced by the expression (from now on
we consider, for simplicity, a single detector and consequently remove the
subindex i)

Q(I) = T−1(1− e− ζT (I−I0))Θ(I − Im)

= ζ(I − I0)Θ(I − Im) + O(ζ2) , (31)

where I0 is the average of I for the ZPF alone (when there is no signal
present). Im is some threshold intensity, related to the voltage bias of the
detector and fulfilling the condition Im > I0, and Θ(x) is the Heaviside
function, Θ(x) = 1 if x > 0, 0 otherwise. Our choice guarantees that the
probability per unit time Q satisfies the positivity condition Q ≥ 0. We
assume an exponential function, rather than a linear dependence on I − I0,
in order to prevent Q becoming greater than one. The definition of I as
a functional over a finite (nonzero) time interval implies that two counts
cannot be produced within a time interval smaller than T . This implies that
T should be smaller than the dead time of the detector. The parameter ζ is
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proportional to the detector efficiency but has dimensions of area divided by
energy.

This completes the definition of our class of models. Now we shall rewrite
the detection probability (28) in an equivalent form by introducing an addi-
tional integration with a Dirac’s delta, δ(I − J). That is (the superindex m
is for “model”)

pm =
∫

W ({αk})Q(I)δ[I − J({αk}, φ, t′)]dId2Nαk , (32)

where we include in J ({αk}, φ, t) all the dependence of the effective intensity
I on the initial field amplitudes {αk} and the controllable parameters φ of the
experiment. In principle it is possible, although cumbersome, to perform the
integration over the amplitudes {αk} in (32), and rewrite it in the compact
form

pm =
∫

ρ(I, t)Q(I)dI , (33)

ρ(I, t) =
∫

W ({αk})δ[I − J({αk}, φ, t)]d2Nαk . (34)

Similarly we obtain, for the joint detection probability,

pm
12 =

∫ t+∆t

t
dt′

∫
ρ12(I1, I2, t, t

′)Q1(I1)Q2(I2)dI1dI2 , (35)

ρ12(I1, I2, t, t
′) =

∫
W ({αk}, {α∗

k})δ[I1 − J1({αk}, φ1, t)]
×δ[I2 − J2({αk}, φ2, t

′′)]d2Nαk
. (36)

These two expressions are very convenient for the comparison between our
model and the standard (linear) quantum treatment. The dependence of J
on {αk} should be derived from the quantum Wigner formalism for every
specific experiment. For instance this was done in Refs. [34, 42, 43, 44] for
most of the spontaneous parametric down-conversion (SPDC) experiments
performed to date.

Now we shall study whether the predictions of the local realist models
above sketched are compatible with the results of performed experiments,
and the extent to which they agree with the quantum predictions. For that
purpose the following steps will be taken: i) To obtain the probability distri-
bution, ρ0(I), of the effective intensity of the ZPF in absence of any further
electromagnetic radiation. ii) To obtain the probability distribution, ρ(I),
for the radiation that arrives at the detector when it is illuminated with a
light beam.
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We may assume that the probability distribution of the effective intensity
when only the ZPF is present is gaussian, that is

ρ0(I) =
1

σ0

√
2π

e−(I−I0)2/2σ2
0 . (37)

The calculation of the probability distribution of effective intensity when
there is a signal present depends on the nature of the signal. If it is gaussian
and stationary, which happens for instance in SPDC (see next section), we
get

ρ(I) ∼=
1

σ0

√
2π

e−(I−Is−I0)2/2σ2
0 , (38)

where we have defined the signal effective mean intensity by

Is ≡ 〈I〉 − I0, (39)

and have assumed that Is � I0 in the numerator of the exponent, so that
the variance of I is effectively σ2

0.
Hence we obtain the detection probability within a window, using eqs.(38),

(33) and the approximate expression in (31). We get

pm =
1

2
ζIs erfc(−z) +

ζσ0√
2π

e−z2

+ O(ζ2) , (40)

where

erfc(x) =
2√
π

∫ ∞

x
exp

(
−t2

)
dt ,

and
z = (Is + I0 − Im)/(σ0

√
2) .

This expression clearly shows the nonlinear dependence of the detection prob-
ability on the incoming intensity. However, if

Is � σ0 , (41)

then choosing the controllable parameter Im, related to the voltage bias, so
that

I0 + Īs − Im � σ0 , (42)

(but Im > I0 in order to preserve the positivity of Qi in eq. (31)) we obtain

Pm ∼= ζIs . (43)
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This is very similar to the standard (linear) quantum result, the only dif-
ference being the presence of the effective intensity of the signal, Īs, instead
of the instantaneous intensity Is, in the quantum formula. If they are pro-
portional, full agreement may be obtained by appropriate choice of ζ. We
shall therefore refer, in section 5 of the present article, to eq.(24) as the
linear quantum detection theory, and it may legitimately be considered as a
linear approximation to a local realist theory of the type we have just de-
scribed. But we stress that the approximation is not valid for very weak
signals (Is = O(σ0)) or for high detector efficiency (ζIs = O(1)), the latter
because the approximation in (31) is not valid.

We stress that we have been speaking in this section only about “photon
counters”, which are the detectors typically used in quantum optics. The
detectors used in astronomy, which are also the type needed for the SPUC
experiment to be described in the next section, use a long resolution time.
Such detectors simply measure the total energy, above the ZPF, which is
incident upon them, so the standard normal-ordering theory of detection,
based on T →∞, may be used.

3.3 Constraints put on detection by local realism

The predictions of our model agree with those of standard quantum theory
for experiments in which the intensity of the signal is not too weak, so that
(41) holds true, and the detector’s efficiency is low enough, so that the lin-
ear approximation in (31) may be used. In particular we conjecture that
local realist models exist which are compatible with the violation of all Bell
inequalities tested experimentally to date, those inequalities having been de-
rived from local realism plus auxiliary assumptions. At high efficiency, the
model departs from conventional quantum theory, in that it predicts a non-
linear response of the detectors (see eqs.(32) and (31)), or a high dark rate,
or both (see eq.(40)). This is the feature that would prevent the violation of
a genuine (inhomogeneous) Bell inequality, that is one involving no auxiliary
assumptions in addition to local realism. Our model would be disproved if an
optical experiment violated a genuine Bell inequality, that is what is usually
named a ”loophole-free test”. But apparently the possibility of such a test
still lies far in the future [17]. In any case, such a test would involve mea-
surements of both singles and coincidence counts [38], and also should avoid
any background subtraction. The latter condition derives from the fact that
our model predicts the existence of some fundamental dark rate in photon
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detectors, and there is no reason why a Bell inequality should be satisfied if
that rate is subtracted.

For particular models more simple tests may be possible. In these models
it would be possible to calculate the parameters σ0 and ζ defined in eqs.(31)
and (37) in terms of parameters which are measurable plus the parameter
T , which has the dead time of the detector as upper bound. This gives
inequalities which may be empirically tested. In this form any particular
model would have predictive power going beyond standard quantum optics.
For instance, nobody will claim that quantum mechanics is violated by an
experiment if it is discovered that there is a dark rate or that the response
of the detector to the signal is nonlinear, both features in disagreement with
the predictions of the linear quantum theory of detection. These facts will be
attributed to imperfect functioning of the detectors, imperfections which are
considered technological problems irrelevant for the test of quantum theory.
In contrast, our models indicate rather stringent and fundamental constraints
on the functioning of detectors precisely because the ZPF is taken as real.
And the reality of the ZPF is an unavoidable consequence of assuming that
the Wigner function is a probability distribution, which is the central idea of
our approach.

For illustrative purposes we give the inequality which has been derived in
our model of [37]. It predicts a lower bound for the singles counting rate

Rate � ηλf 2

2R2
l L
√

τT
, (44)

where η is the quantum efficiency of the detector, λ the typical wavelenght
of the signal, Rl and f are the radius and focal length of the collecting lens,
L the depth of the active zone of the detector and τ the coherence time of
the signal beam. That particular model seems to be incompatible with some
recent experimental results [39], but we expect to find more refined models
which are compatible with these experiments. In any case we conjecture that
the existence of a minimum detectable intensity is model-independent; it is
an unavoidable consequence of taking the ZPF as real. But in order to avoid
misunderstanding we stress again that the intensity capable of being detected
may be as small as we want in the case of long time windows, that is large T ,
or if we have highly monochromatic signals, i.e. large τ, as is shown by (44) .
This fits with the fact that the standard, linear quantum theory of detection
is derived in the limit T →∞, as discussed above.
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4 Spontaneous parametric up

and down conversion

We have drawn attention to the two problems which a local realist interpreta-
tion of the optical Wigner function must confront. In Section 2 we considered
the first of these, which is that there are quantum states, for example the
number states, which give nonpositive Wigner functions. In section 3 we
considered the other one, which is that a simple subtraction of the ZPF, by
normal ordering, produces negative detection probability for some signals.
We have shown that both problems have solutions. Indeed, in each case we
have found that the solution depends on recognizing the multimode nature
of the signal. In the present section we shall confine attention to signals pro-
duced by the process of spontaneous parametric down conversion (SPDC) in
nonlinear crystals. This has been the area most intensively researched, during
the last two decades, in connection with photon-entanglement phenomena,
which we discuss in the next section. It is also the area most adequately
treated in the Wigner function formalism, because it is possible to treat the
production of the signal entirely classically, leaving us with only the detection
problem. Our treatment of SPDC leads us to the prediction of a new phe-
nomenon, spontaneous parametric up conversion (SPUC), which we analyze
in the latter part of this section.

4.1 Down conversion

Parametric Down Conversion (PDC) is the optical analogue for a well es-
tablished classical phenomenon of wave propagation in a nonlinear disper-
sive medium. It was discovered in the 1960s, when high-intensity coherent
sources (lasers) became available. When two lasers of frequencies ω1 and ω3

(ω1 > ω3) are incident on a nonlinear crystal (NLC) whose space group has
no centre of symmetry, then, for a certain combination of incidence angles,
a signal of frequency ω2 = ω1 − ω3 is emitted (see Fig.3).

For example ω1 could be a normally incident laser at 351nm and ω3 could be
another laser at 845nm, giving the wavelength of ω2 at 600nm. The angles
θ3 and θ2 are given by certain phase matching relations between the wave
modes within the crystal, and depend on its refractive indices. In a BBO
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crystal, cut so that the optic axis makes an angle of 37 degrees with ω1, they
are θ3= 11.4 degrees and θ2= 8.1 degrees. Note that the incident ω1 wave
has extraordinary, and the ω3 wave ordinary polarization. The signal at ω2

is then ordinarily polarized, and the process is known as Type-I PDC.
SPDC is the name given to the phenomenon which occurs when we remove

the laser ω3; a weak signal, which is nevertheless visible to the unaided
eye, remains in the outgoing ω2 channel. This is because, in the vacuum,
there is a ZPF intensity in all modes, corresponding to half a “photon”.
The SPDC phenomenon actually manifests itself as a rainbow (see Fig.4);
since all frequencies and directions of modes are present in the ZPF, all the
corresponding down converted signals also appear at the angles satisfying
the appropriate phase matching relations. We shall discuss below the way in
which the exit angles of the rainbow are determined.

The above phenomenon is nowadays often called simply PDC, because it
has become popular to view the process as one in which laser “photons” ω1

down convert into ω2 and ω3. In this description the phase matching relations
linking the wave vectors of the three coupled modes in SPDC are considered
to express conservation of four-momentum between the three participating
“photons”. It is an unfortunate, and highly misleading, consequence of this
description that certain correlations in the intensities of the outgoing SPDC
signals are now widely interpreted as showing rather bizarre connections
between the corresponding “photons”. The related phenomenon of SPUC,
which we describe later in this section, will show that the wave description
of SPDC, which we gave above, is the more correct one.

The electric-field operator in a nonlinear crystal satisfies the Maxwell
equation[40]

∇×∇× Ê +
1

c2

∂2(ε · Ê)

∂t2
= −µ0

∂2P̂NL

∂t2
, (45)

where P̂ is the polarization vector, whose linear part is contained within the
permittivity tensor ε, and whose nonlinear part is given by

P̂NL
i = 2dijkÊjÊk , (46)

where dijk is essentially the Pockels tensor[41]. We have linearized this

equation[40] by separating the part of Ê represented by the pumping laser
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ω1, that is by making the replacement

Ê(r,t) → 2A1u1 cos[ω1(t− n1z/c)] + Ê(r,t) , (47)

where n1 is the refractive index of the extraordinary wave ω1 propagating in
the z, that is normal, direction indicated in Fig.3, and u1 is a unit vector
in the direction of that mode’s electric vector. Note that, since this mode is
extraordinary, u1 has a nonzero z-component, and that n1 is an appropriate
square root of the tensor ε. Thus we have essentially abstracted the field
component corresponding to the pump from (15). We are also neglecting
the fluctuations in the pump’s amplitude, so we replace the operator â1 in
(15) by the “variable” α1 of (14), which is taken as constant in our linearized
procedure. Then A1 in the above equation is related to α1 by

A1 =
h̄c|k1|
2ε0L3

α1 . (48)

Now because the equation determining Ê, in our approximation, is linear,
and because the unperturbed state of the field is the gaussian process given
by the Wigner function of the vacuum, we have been able to show (see the
above reference) that all of the other field amplitudes may now be replaced
by their stochastic equivalents, that is we may simply use the field defined by
(14), and it satisfies the stochastic differential equation

[∇×∇× E]i +
εij

c2

∂2Ej

∂t2
=

8µ0A
2
1dijku1ju1k sin[2ω1(t− n1z/c)]

−4µ0A1dijku1j
∂2Ek cos[ω1(t− n1z/c)]

∂t2
. (49)

We have therefore shown that solving this equation, with the initial values
of all the field amplitudes given by the distribution (6), will give exactly
the same result as solving the operator equation (45). Note that we have
discarded the terms in P(NL) which are quadratic in the vacuum part of the
field; this is the essence of our linearization.

We have followed two procedures for solving eq.(49). The first is close
to the quantum optical procedure, and consists in using the hamiltonian to
deduce the time derivative of αk,λ[34, 42, 43, 44]. The second is to work with
the stochastic equation directly, either by a perturbation procedure[45, 46] or
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by a mode-coupling one, based originally on that described in Ref.[41] Section
19.4 and developed by us in Ref.[40], and we shall use the latter here. We
look for a solution in which E(r,t) is given by eq.(14), but the amplitudes
αk,λ are slowly varying functions of z. Then the two ordinary (that is λ = 1)
modes ω2 and ω3 are coupled

dα2

dz
= iG2e

−i∆zα∗
3 ,

dα3

dz
= iG3e

−i∆zα∗
2 , (50)

where

∆ = k1z − k2z − k3z , G2 = dijku2iu3ju3kA1
ω2

2

k2z

,

G3 = dijku3iu1ju2kA1
ω2

3

k3z

, (51)

and our model imposes perfect phase matching in the x- and y-directions
and in frequency, that is

k1x − k2x − k3x = 0 , k1y − k2y − k3y = 0 , ω1 − ω2 − ω3 = 0 . (52)

The solution to these coupled equations is

α2(z) =
[
cos(1

2
Kz) + i∆

K
sin(1

2
Kz)

]
e−i∆z/2α2(0)

+ 2iG2

K
sin(1

2
Kz)e−i∆z/2α∗

3(0) , (53)

where

K2 = ∆2 − 4G2G3 , (54)

with a similar expression for α3(z).
The intensities in the outgoing SPDC beams are obtained by defining

filtered components of the outgoing electric field E, designated E2 and E3.
They represent narrow subsets of wave vectors close to k2 and k3, which, as
discussed in the previous section, are the parts of the emitted field sampled at
the “photon” detectors. We define also the positive and negative frequency
parts of these fields E

(+)
i and E

(−)
i in the same way as in eq.(14). For example

E
(+)
2 (r,t) = u2

√
h̄|k2|
2ε0L3

(2)∑
k

αk,1(l)e
ik.r−i|k|ct/n , (55)
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where the index (2) on the summation denotes the above process of filtration
for beam (2), and it is limited to the ordinary modes (λ = 1). Then the
outgoing intensities in the two beams are obtained by summing the squares
of the above mode amplitudes, that is

I2,3(l) =
h̄ω2,3

2L3

(2+3)∑
〈α2,3(l)α

∗
2,3(l)〉 , (56)

where l is the length of the crystal and 〈〉 denotes an averaging process
weighted by the vacuum distribution (6). The (2+3) over the summation
indicates that we are summing over all pairs of modes, in the (2) and (3)
subsets, which satisfy the phase-matching conditions (52). We find that

I2(l)− I2(0) =
h̄ω2l

2

4L3
G2(G2 + G3)

(2+3)∑
sinc2(1

2
∆l) , (57)

with a similar expression for the other mode. We have here introduced the
sinc-function, defined by

sinc(x) =
sin x

x
, (58)

and we have approximated by putting K equal to ∆, which means these
expressions are correct to order G2; to this approximation the expressions
obtained with the alternative perturbation approach[45, 46] are the same.

We see from the above result that all ordinary modes of the ZPF are
amplified above their vacuum values by the nonlinear interaction. There
is nothing miraculous about this process; the increase in their energy is at
the cost of a minuscule depletion of the laser amplitude A1. The greatest
amplification is in those modes for which the sinc-function has a maximum,
that is for modes giving ∆ close to zero, which means perfect phase matching
in the z-direction (or conservation of “photon z -momentum”). By reference
to the previous section, we see that a detector with a long resolving window,
like the human eye, simply subtracts the vacuum intensity level in all modes.
So the position of the visible rainbow is given by those values of k2 giving
perfect phase matching in time and in all three spatial directions, that is

k1 = k2 + k3 ,

|k1|/n1 = |k2|/n2 + |k3|/n3 , (59)
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where n1 is the refractive index for an extraordinary wave at ω3, and n2, n3

are the indices for ordinary waves at ω2, ω3. This is all we needed in order
to construct Fig.4.

In addition, the modes k2 and k3 are strongly correlated, that is large
values of I2(l) are associated, through the coupling, with large I3(l). This
explains qualitatively the synchronization observed in photon counts[47, 48],
and also the body of SPDC data which is widely interpreted as showing
photon entanglement. To discuss these data requires that we apply the de-
tection theory developed in the preceding section to short windows, of the
order 10ns, which we shall do in the following section. Some results which
follow directly from our analysis[40], and which we shall use in the sequel,
are the electric field autocorrelation in the outgoing beam, and the cross cor-
relation between two “entangled” beams. The field autocorrelation for the
beam (2) is obtained by taking the dyadic product E2(r, t)E2(r

′, t′) averaged
over the random variables αk,λ(0), using the vacuum Wigner distribution.
This is a generalization of the procedure we just used to calculate the beam
intensity. We obtain

〈E(+)
2 (r, t)E

(+)
2 (r′, t′)〉 = 〈E(−)

2 (r, t)E
(−)
2 (r′, t′)〉 = 0 ,

〈E(+)
2 (r, t)E

(−)
2 (r′, t′)〉 − 〈E(+)

2 (r, t)E
(−)
2 (r′, t′)〉0 =

h̄ω2l
2

4L3
G2(G2 + G3) u2u2

(2+3)∑
sinc2(1

2
∆l)eik2·(r−r′)−i|k2|c(t−t′) . (60)

The latter expression may be written as

u2u2 [I2(l)− I2(0)] µ2(r− r′, t− t′) ,

where µ2(0, 0) = 1, and the autocorrelation for k3 is given by a similar
expression. It will be observed that µ2,3(r, t) → 0 as either |r| → ∞ or
|t| → ∞. These properties enable us to define a coherence time and length
for the SPDC beams. The cross correlation between the two beams is

〈E(+)
2 (r, t)E

(−)
3 (r′, t′)〉 = 〈E(−)

2 (r, t)E
(+)
3 (r′, t′)〉 = 0 ,

〈E(+)
2 (r, t)E

(+)
3 (r′, t′)〉 = 〈E(−)

2 (r, t)E
(−)
3 (r′, t′)〉 =

h̄
√

ω2ω3

4L3
(G2 + G3) u2u3

(2+3)∑
l sinc(∆l)eik2·r+ik3·r′−ic(|k2|t+|k3|t′)−i∆l . (61)
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4.2 Up conversion

The phenomenon of spontaneous parametric up conversion (SPUC)[40, 49]
may be understood by seeing what happens when we reverse the roles of the
pump and the ZPF mode in Fig.3, that is the coherent input ω1 is coupled
to a ZPF mode ω3 with ω3 > ω1. Then, by the same process as before, a
signal of frequency ω3 − ω1 may be emitted, and, if the angles are such that
the phase matching relations are satisfied, this signal will have an intensity
approximately the same as was observed in SPDC, that is it will be visible
to the unaided eye. What is remarkable is that, if ω3 > 2ω1 then ω2 > ω1,
which means that the signal “photon” has a higher energy than a “photon”
of the pumping laser, which is why we call the phenomenon up conversion.

It is a simple matter to calculate the position of the SPUC rainbow, along
the same lines as we used to draw Fig.4. This has been discussed qualitatively
elsewhere[49]. We find that, with the same BBO crystal as was used for Fig.4,
the SPUC rainbow has the form depicted in Fig.5.

As expected, we find that the phase matching relations are satisfied, with
a pump (ω1) at 845nm which has ordinary polarization, for a wide range of
visible frequencies (ω2). These outgoing visible signals result from the mixing
of ZPF modes in the ultraviolet with the infrared pumping mode. In contrast
with SPDC, the rainbow is not symmetrical; the value of θ2 depends on the
azimuthal angle φ2 which it makes with the crystal’s optic axis. Indeed, when
we come to consider the intensity we shall see that, for all visible frequencies,
the rainbow is very much more intense in the region of φ2 = 180 degrees. The
reason for the anisotropy is that the partner mode of the ordinarily polarized
ω2 is an extraordinarily polarized ω3, whose refractive index depends on the
angle its wave vector makes with the optic axis.

To calculate the intensity, we have to sum the individual mode intensities,
given by a calculation[40] almost identical with what we described for SPDC
in eq.(57). The resulting intensity is a function of the frequency ω2 and of the
azimuthal angle φ2, and contains the intensity of the incident laser |A1|2 as a
factor. Dividing by this factor gives the cross section for the SPUC process,
and this may be compared with the cross section of a typical SPDC process.
We have taken as examples the SPDC process from a pump at 442nm and
a SPUC process with a pump at 845nm. In Fig.6 we plot the two cross
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sections, as function of the azimuthal angle for λ2 = 600nm (left), and as a
function of wavelength at azimuth 180 degrees (right).

The first plot shows a strong concentration of intensity for SPUC at az-
imuths near to 180 degrees; this contrasts with a fairly uniform azimuthal
distribution in SPDC, and, together with the exiting angle depicted in Fig.5,
it tells us both the position and intensity of the SPUC rainbow. The right
plot shows that, at 180 degree azimuth, the intensity of the SPUC rainbow,
with a normally incident laser at 845nm, is about half that of the SPDC
rainbow with a normally incident 442nm laser. It is therefore not at all a
difficult matter to observe the SPUC rainbow, and indeed to photograph it
in glorious technicolor!

5 What is entanglement?

Schrödinger[50] introduced the word entanglement for what he described as
“not one but rather the characteristic trait of quantum mechanics”. En-
tangled states are states of two or more particles that cannot be written,
in the hilbert-space formalism, as products of single-particle states. The
paradigm of entanglement is the state described by EPR[1] which, in the
case of polarization-entangled photon pairs is

| Ψ〉 =
1√
2

(| R1〉 | R2〉− | L1〉 | L2〉) , (62)

where R (L) means a right (left) hand circular polarization. In the following
we shall show that entanglement has a very simple explanation in the Wigner
formalism of quantum optics: it is just a correlation which involves the ZPF,
whilst “classical” correlations involve only the radiation which is above the
level of the ZPF.

Entanglement gives rise to most of the allegedly nonclassical quantum
phenomena, and has received considerable attention in the last few decades.
In particular it is at the basis of a new branch of quantum theory called
quantum information which is being actively investigated at present[51]. The
most dramatic consequence of entanglement is that it predicts violation of
local realism, supposedly demonstrated in tests of the Bell inequalities. In
the next subsection we shall see that the action of a beam splitter provides a
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simple example of entanglement, and shall show how the paradoxical wave-
particle behaviour of light may be explained easily by a purely wave theory.

5.1 The action of a beam splitter and the wave-particle
duality

In classical optics a beam splitter usually has an incoming channel, say chan-
nel 1, and two outgoing channels, say 2 and 3 (see Fig.7). If a light beam
arrives at channel 1, a fraction of the intensity goes to 2 and other fraction
to 3. For simplicity we shall consider balanced beam splitters where half of
the intensity goes to each outgoing channel.

In the hilbert-space formalism of quantum optics the action of the beam
splitter is described by stating that, if one photon arrives in channel 1, the
state in channels 2 and 3 is represented by the entangled state

| Ψ〉 =
1√
2

(| 12〉 | 03〉+ | 02〉 | 13〉) , (63)

where | 1〉 ( | 0〉 ) means that 1 ( 0 ) photon is present in the channel labelled
by the subindex. This represents a linear combination of two states, each
with one photon in one channel and the vacuum in the other channel. If
we calculate the probability of getting one photon in channel 2 we obtain,
according to the standard quantum measurement theory

〈Ψ | â†2â2 | Ψ〉 = 1
2
, (64)

where n̂2 = â†2â2 is the observable “number of photons in channel 2”. Simi-
larly, the probability of getting one photon in channel 2 and another one in
channel 3 is

〈Ψ | â†2â
†
3â2â3 | Ψ〉 = 0. (65)

This is interpreted as saying that the incoming photon goes undivided into
one of the channels, which allegedly proves the corpuscular nature of the pho-
ton. However, if the beams 2 and 3 are recombined at another beam splitter
it is possible to show interference, which clearly indicates wave properties
of light. An experiment resting upon these quantum optical predictions was
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performed by Grangier et al.[23]. The experiment will be described and an-
alyzed below in some detail. These predictions are considered an example of
the counterintuitive and highly nonclassical phenomena associated to quan-
tum entanglement. But we shall see in the following that a rather intuitive
picture may be obtained from the analysis of the phenomena in the Wigner
formalism.

As usual, the Wigner formalism of quantum optics treats light exactly
as classical optics, derived from Maxwell equations, except that it includes a
ZPF. In particular, if we are interested in the radiation going out from chan-
nels 2 and 3 we should include, in addition to the signal beam entering by
channel 1, an incoming ZPF radiation entering by the fourth channel which
we shall label 0. Thus, in the Heisenberg picture of the Wigner representa-
tion, we shall write

E
(+)
2 (t) =

1√
2

(
E

(+)
0 (t) + iE

(+)
1 (t)

)
, (66)

E
(+)
3 (t) =

1√
2

(
E

(+)
1 (t) + iE

(+)
0 (t)

)
, (67)

and similarly for E
(−)
2 (t) and E

(−)
3 (t). We remember that E

(+)
1 (t) is given,

in terms of the amplitudes of the modes, by eq.(14) but including in the
summation the relevant modes only (i.e. those where there is radiation above

the ZPF). In E
(+)
0 (t) we include only the relevant modes, defined as those

which could interfere with the ones of E
(+)
1 (t) in the outgoing channels. In

particular the beam represented by E
(+)
0 (t) should have the same polarization

as that of E
(+)
1 (t) and this is why we use a scalar representation in (66). We

note that the need to take account of the fourth beam-splitter channel is
recognized in the hilbert-space formalism, where that input is required in
order preserve the commutation relations between the field operators [52].

From (66) it is easy to calculate the singles (Rj) and coincidence (R23)
counting rates at detectors in beams 2 and 3. These quantities are more
physical than the probabilities (64) and (65). In the linear detection theory
(see section 3) we have

R3 (t) = R2 (t) = η 〈I2 (t)− I0〉 ,

R23 (t, t′; τ) = η2
∫ t′+τ

t′
dt′′ 〈(I2 (t)− I0) (I3 (t′′)− I0)〉 , (68)

where, for i = 2, 3,
Ii (t) = cε0E

(+)
i (t)E

(−)
i (t) , (69)
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τ is the coincidence detection window and η is a constant proportional to the
efficiency. In the calculation of (68) we shall use the property that for four
gaussian amplitudes, say A, B, C, D, the following equality holds

〈ABCD〉 = 〈AB〉 〈CD〉+ 〈AC〉 〈BD〉+ 〈AD〉 〈BC〉 . (70)

Thus, taking into account that E0(t) is uncorrelated with E1(t), we have

R2 (t) = 1
2
η(〈I1 (t)〉+ cε0〈E(+)

0 (t)E
(−)
0 (t)〉 − 2I0)

= 1
2
η〈I1 (t)− I0〉 ≡ 1

2
ηI1 (t) , (71)

the latter equality coming from the identification cε0

〈
E

(+)
0 (t)E

(−)
0 (t)

〉
= I0,

and I1 is the expectation value of the intensity (above ZPF) of the signal
beam entering by channel 1. The coincidence rate depends on the nature
of the signal beam. For instance, if it is produced by SPDC, the calcula-
tion is straightforward, taking into account its gaussian character and the
autocorrelation (60) of E

(+)
1 (t). We get

R23 (t, t′; τ) =
1

4
η2I2

1

[
τ +

∫ τ

0
dt′′|µ (t′′) |2

]
, (72)

where µ is the function defined in (60) for r = r′.
We see that, at t′ = t, the coincidence probability is greater (almost twice

for small τ) than the one expected if the incoming beam had a nonfluctuating
intensity. (In actual experiments that result may be observed only if the
beams have sufficient spatial coherence.) The fact that R23 > τR2R3 is
usually called photon bunching and it is explained, in standard quantum
theory, as a consequence of the boson character of the photons. In the Wigner
formalism we see that it is, simply, a consequence of the fluctuating (in our
case gaussian) character of the light beam of SPDC. The same result (72)
is obtained for any classical chaotic light, like that of a lamp. We have
shown elsewhere [32, 33] that it is also obtained when the source consists of
a number of atoms, given that the times of emission cannot be controlled.
The point is that there is no trace of corpuscular behaviour in the result
(72). It is impossible to show any corpuscular behaviour of light by looking
at radiation coming from a distant astronomical object, contrary to what has
often been claimed.

The wave nature of light may be shown with the following experiment
(see Fig.8),
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performed by Grangier et al.[23] with light coming from an atomic source,
but here we shall analyze a similar experiment with a SPDC source. The
experiment consists of recombining beams 2 and 3 of (66) at a second beam
splitter. Then the outgoing beams, 4 and 5, will be given by

E
(+)
4 (t) =

1√
2

(
E

(+)
2 (t)eiφ + iE

(+)
3 (t)

)
,

E
(+)
5 (t) =

1√
2

(
E

(+)
3 (t) + iE

(+)
2 (t)eiφ

)
, (73)

where the angle φ takes account of the difference in the optical path lengths,
which may be varied by moving M1. By a calculation similar to the one
leading to (72) it is straightforward to get

R4 = ηI1 cos2 φ , R5 = ηI1 sin2 φ , (74)

which shows interference, a characteristic trait of waves. (In Fig.8 only one
detector is shown.)

In order to have results similar to (64) and (65), showing the alleged
corpuscular behaviour of light, it is necessary to perform a more sophisticated
experiment. In it we must start with two beams having entangled photons,
like the signal and idler produced in SPDC or the two beams of different
colour produced by atomic cascades. With the latter source it was performed
by Grangier et al. [23] (but see comment[53]). We shall analyze it with an
SPDC source. There is a detector, D2, in the signal beam, whilst the idler
impinges on channel 1 of a beam splitter. There are two more detectors, D3

and D4, in the outgoing channels of the beam splitter (see Fig.9).

The measurable quantities are the singles rate R2, the coincidence rates R23

and R24 and the triple coincidence rate R234. In practice, when detector D2

fires, detectors D3 and D4 are allowed to detect during some time window,
τ, which should be of the order of the correlation time given by the function
µ (t′ − t) of (72). The triple coincidence is

R234 = η3
∫ τ

0
dt′

∫ τ

0
dt′′F , (75)
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where

F = 〈(I2 (t)− I0) (I3 (t + t′)− I0) (I4 (t + t′′)− I0)〉 . (76)

Then, using the gaussian property ( 70), we get

F = 〈I2 − I0〉〈I3 − I0〉〈I4 − I0〉 (77)

+〈I2 − I0〉
∣∣∣〈E+

3 E−
4

〉∣∣∣2 c2ε2
0 (78)

+ 〈I3 − I0〉
∣∣∣〈E+

2 E+
4

〉∣∣∣2 c2ε2
0 (79)

+ 〈I4 − I0〉
∣∣∣〈E+

2 E+
3

〉∣∣∣2 c2ε2
0 , (80)

where we have suppressed the time dependence for simplicity. From the
auto- and cross-correlation properties of beams produced in SPDC, we see
that the first two terms are of order G6 and the latter two of order G4 so
that R234 is of overall order G4. In contrast R2, R23 and R24 are all of order
G2. Consequently, as G � 1, we have

αG ≡
R234R2

R23R24

� 1. (81)

The dimensionless quantity αG was taken as a substitute for the rather for-
mal quantity (65) by Grangier et al.[23]. The small value found in their
experiment has been interpreted as proof of the corpuscular nature of light.
In our analysis, however, the experiment may be explained in terms of cor-
relations between waves, together with a threshold in the detection process.
It is the interference between the signal field E3 and the ZPF input E0 at
BS which explains the anticorrelation counts in the outgoing channels. The
interference may be constructive in channel 3 and destructive in channel 4
or viceversa, but it cannot be constructive in both. That is why a detection
event occurs in only one of these channels. A similar analysis may be made
of the earlier anticorrelation experiment of Clauser[22].

5.2 The Bell inequalities

In 1964 Bell[4] proved that there are predictions of quantum mechanics which
cannot be reproduced by any local hidden variables (LHV) theory. It there-
fore may seem possible to discriminate between quantum mechanics and local
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realism (i.e. the whole family of LHV theories) by suitably designed exper-
iments. Experiments attempting to do this, whether or not they are fully
adequate, we shall call simply Bell tests. Actually most of such tests made
during the last 20 years have used photon pairs produced in the process of
SPDC [9, 10]. In general they have confirmed quantum mechanics but, in
spite of great efforts, the fact is that they have been unable to disprove local
realism. Indeed we shall prove that our approach provides a LHV model for
all SPDC experiments, by combining the Wigner version of quantum optics,
applied to the production and propagation of light, with the detection model
we presented in section 3.

According to Bell [4], the crucial difference between quantum mechanics
and LHV theories occurs in experiments where we measure the probabilities
of the results of some measurements performed at space-like separation (EPR
experiments[1]). In practice the measurements usually consist of detecting
two particles after each one has passed through a two-channel device such
as a polarizer or a Stern-Gerlach type apparatus. Any LHV model should
contain hidden variables λ, with a probability distribution ρ(λ), giving the
following single and joint detection probabilities:

p1 =
∫

ρ(λ)P1(λ, φ1)dλ ,

p2 =
∫

ρ(λ)P2(λ, φ2)dλ ,

p12 =
∫

ρ(λ)P1(λ, φ1)P2(λ, φ2)dλ , (82)

where φ1 and φ2 represent controllable parameters of the two-channel device,
and P1(λ, φ1), P2(λ, φ2) are functions which give the detection probabilities
for the two particles after emerging from the device. If no further restrictions
are imposed, a model resting upon eqs.(82) is always possible, but in order
to have a LHV model the functions P1, P2 , and ρdλ should be probabilities,
and consequently the following conditions should also be fulfilled

ρ(λ) ≥ 0 ,
∫

ρ(λ)dλ = 1 ,

0 ≤ P1(λ, φ1), P2(λ, φ2) ≤ 1 . (83)

The Wigner formalism of quantum optics provides an explicit LHV model
for quantum optical experiments. We simply take the field amplitudes {αk}
in place of the hidden variables λ and the Wigner function W({αk}) in place
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of the function ρ(λ). But in order to get an LHV model the Wigner function
should be nonnegative and, in addition, we should introduce some nonnega-
tive functions of the random variables {αk}, which could play the role of the
functions Pi(λ, φi) of eqs. (82) . The Wigner function is nonnegative, at least
if the source of radiation is SPDC, as we showed in section 4. We shall show
how to define functions Pi(λ, φi) in the next section.

5.3 Analysis of a Bell test using type-II parametric
down conversion

Early Bell tests[5, 6, 7, 8] used atomic cascades. An analysis of this series
of tests, based on a primitive version of the present theory, was made by us
in [54]. Most Bell tests since 1982 have been made using SPDC in nonlinear
crystals. Initially they used type-I parametric down-conversion in which the
two correlated beams have the same polarization. In [34, 42, 43] experiments
of this kind were analyzed in the Wigner function formalism. However, more
recent experiments, using type-II phase matching, provide a more direct way
to generate “entangled-photon” states. Type-II experiments are themselves
of two types. In the first, that is collinear type-II SPDC[55], the crystal is
oriented so that the ordinary and extraordinary radiation cones are mutually
tangent in the direction of the pumping beam. To date, nearly all type-II
experiments have used collinear phase matching. On the other hand [9],
in noncollinear type-II phase matching, the two cones intersect along two
directions, and this gives rise to an entangled state in the polarization (see
Fig.10). It has been claimed that such a source produces true entangled
states, capable of violating Bell’s inequalities.

The beams 1 and 2 are selected and sent to two polarizers P1 and P2 oriented
at angles φ1 and φ2 with respect to the polarization of the extraordinary ray.
Coincidence rates were measured as functions of angles φ1 and φ2. In [9]
additional optical devices, that is half- and quarter-wave plates, were used in
order to produce four different Bell states, but we shall confine our analysis
to just one of these states, namely the one which uses no additional devices.

Let us see how the polarization-entangled state is represented in the
Wigner formalism. The two beams, coming out of the crystal along the
directions where the ordinary and extraordinary cones intersect, are given
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by
E

(+)
1 (r, t) = E(+)

e (r, t)i + E
(+)
o′ (r, t)j,

E
(+)
2 (r, t) = E

(+)
e′ (r, t)i′ + E(+)

o (r, t)j′, (84)

where i, i′ represent the polarizations of the extraordinary beams and j, j′

the polarizations of the ordinary beams. The essential point is that the
extraordinary component, E(+)

e , of the first ray and the ordinary component,
E(+)

o , of the second ray are conjugated, and therefore correlated. Similarly,

E
(+)
o′ and E

(+)
e′ are correlated, but E(+)

e (E(+)
o ) is uncorrelated to E

(+)
e′ (E

(+)
o′ ).

Furthermore, the only nonzero correlations fulfil

〈E(+)
o E(+)

e 〉 = 〈E(+)
o′ E

(+)
e′ 〉. (85)

When a field E1 arrives at (an ideal) polarizer P1 with polarization plane
given by the unit vector e1, we should consider also the relevant ZPF incom-
ing by the other channel. Then the outgoing fields are

E
(+)
3 (r1, t) = [E

(+)
1 (r1, t) · e1]e1

+[E
(+)
0 (r1, t) · e′1]e′1, (86)

where e′1 is a unit vector perpendicular to e1. Here we recall that the action
of a polarizer in classical optics is to project the electric field vector on the
polarization direction, which in our approach is made in the first term of (86)
for the signal and in the second for the ZPF entering the other channel.

In the same way we write for the field at the polarizer P2 at time t′

E
(+)
4 (r2, t

′) = [E
(+)
2 (r2, t

′) · e2]e2

+[E
′(+)
0 (r1, t

′) · e′2]e′2, (87)

where E
′(+)
0 is the ZPF entering the second channel of the polarizer P2.

The coincidence detection probability is

P34 = η2
∫ t+τ

t
dt′ 〈(I3 (t)− I0)(I4 (t′)− I0)〉 , (88)

where
Ii(t) = E

(+)
i (t) · E(−)

i (t), i = 3, 4, (89)
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and, from now on, we remove the space dependence, which may be taken
into account in a straightforward way [44]. Using the gaussian property (70)
we obtain, from the latter two equations,

P34 = η2
∫ t+τ

t
dt′́{〈(I3 (t)− I0)〉〈(I4 (t′)− I0)〉

+c2ε2
0

∑
kl

∣∣∣〈E(+)
3k (t)E

(+)
4l (t)〉

∣∣∣2}, (90)

where (k, l) label the components of the vectors and we have ignored terms
which are zero because the fields involved are not correlated. The first term
of (90) is of order G4 and therefore small with respect to the second one
which is of order G2. Retaining only the second term and taking account of
the correlations mentioned in eq.(84) and the fact that the ZPF inputs E0

and E′
0 are uncorrelated with the signals and with each other, we have

P34 = η2c2ε2
0

∫ t+τ

t
dt′

∣∣∣〈E(+)
o (t) E(+)

e (t′)〉
∣∣∣2 sin2(φ1 − φ2) (91)

where eq.(85) has been taken into account and we have defined

(i · e1) = sin φ1 , (j · e2) = sin φ2.

The dependence of P34 on the angle (φ1 − φ2) has been measured in the
experiment [9] and corresponds to a 100% contrast. This type of correlation
is usually claimed to violate a Bell inequality, but here we have shown that
it is compatible with local realism, provided that the detection efficiency is
low enough. If we wanted to calculate the coincidence probability with high
efficiency we should use the detection theory outlined in section 3 and not
just the linear approximation used here.

It is interesting to see how our approach gives an explanation for the
violation of the no-enhancement hypothesis of Clauser and Horne [16], which
states that

A light signal’s detection probability cannot increase as a re-
sult of it passing through a polarizer.

In the linear detection theory this means that the following inequality should
hold for any realization of the incoming signal

E
(+)
1 (t) · E(−)

1 (t) ≥ 〈E(+)
3 (t) · E(−)

3 (t′)〉ZPF . (92)
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Observe that no average is required on the left hand side, but an average
over the ZPF input to the polarizer is required on the right hand side. Using
eq.(86), we see that eq.(92) may be written

E
(+)
1 (t) · E(−)

1 (t) ≥∣∣∣[E(+)
1 (t) · e1]

∣∣∣2 +
∣∣∣〈[E

(+)
0 (t) · e1]

〉∣∣∣2
=

∣∣∣[E(+)
1 (t) · e1]

∣∣∣2 + 1
2
(cε0)

−1I0. (93)

The inequality is obviously violated if the signal is polarized so that the vector
E

(+)
1 is parallel to e1, which proves the violation of the no-enhancement

hypothesis for some signals. However it may be seen that condition (92),
averaged over all signals, is fulfilled.

6 Conclusion

We have shown that a wide class of quantum optical experiments may be
interpreted in terms of a Maxwell, that is purely wave, theory of light by
taking the Wigner function of the light field as a probability distribution.
This requires that the Wigner function is nonnegative definite, which seems
to be the case provided we do not make inappropriate idealizations of the
experimental situations.

The idea behind such an interpretation of the Wigner function is that
the electromagnetic quantum vacuum fluctuations, or zeropoint field, is a
real field having the same nature as signals, but then the problem is to ex-
plain why photodetectors are not fired by the zeropoint alone. We solve it
by proposing a model which contains a detection threshold, so that the ze-
ropoint is effectively subtracted. Our model gives predictions which depart
from the standard quantum ones for weak signals and/or high detection ef-
ficiency. We argue that these predictions do not contradict quantum theory,
but only some idealizations of it, arising from approximations such as us-
ing first-order perturbation theory. Combined with the Wigner formalism
it provides an explicit local hidden variables model for all Bell tests using
parametric down conversion sources. Furthermore it gives hints for the do-
main where departures from standard quantum theory are to be expected.
We have also predicted the new phenomenon of Spontaneous Parametric Up
Conversion.
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We show that the so called nonclassical effects of light are produced when-
ever the signal radiation is correlated with the noise (the zeropoint field). In
particular this gives a clear picture of “photon entanglement”, and explains
how a wave theory can explain the anticorrelation produced by a beam split-
ter (“corpuscular behaviour of light”), as well as the enhancement of some
light signals passing through a polarizer. The latter is a phenomenon demon-
strated experimentally by early Bell tests.

Our description of the detection process has many features in common
with that proposed by Gilbert, Oppy and Sulcs[56, 57], based on what those
authors call stochastic resonance. However, they consider only the effect
of a noise intervention at the point of detection, so that the description
of nonclassical states, produced by the mixing of different field modes at
a beam splitter or a nonlinear crystal, forms no part of their description.
Indeed they propose an experiment[58] which would distinguish between their
semiclassical theory and all theories which include entanglement. If such an
experiment were to give what they predict, it would seriously challenge our
theory as well as quantum optics.

To summarize, our definition of reality is in terms of states whose Wigner
function is positive. States not falling within that category are no more
than formal objects, which may nevertheless be of some use for computation.
The situation is similar to what happens when we solve a classical diffusion
equation[59] using a Fourier expansion, where the individual terms in the ex-
pansion are not positive definite but the sum, representing the density of the
diffusing material, is always positive. In the optical case the resulting theory
is semiclassical, rather than classical, because we have no interpretation for
the quantum nature of material particles.
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Figure 1: Classification of states of the radiation field. The restricted set of
classical states whose Glauber P-distributions are nonsingular and positive
is represented by the interior of the small circle.
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Figure 2: Schematic view of the potential seen by an electron in a detector.
The broken line represents the potential created by an applied homogeneous
electric field. A is the position of an atom. The three states mentioned in
the text are represented by horizontal lines.
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Figure 3: Parametric down conversion
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Figure 4: Position of the SPDC rainbow produced when a 351nm laser is
normally incident on a BBO crystal cut with its axis at 37 degrees to the
incident wave vector. The 600, 700 and 800nm components are shown; the
600 being the inner one and the 800 the outer one.
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Figure 5: Position of the SPUC rainbow produced when a 845nm laser is
normally incident on a BBO crystal cut with its axis at 37 degrees to the
incident wave vector. The arcs of the 600, 700 and 800nm components are
shown. Note that, in contrast with SPDC (Fig.4), the rainbow is not a
complete circle, neither is it centred around the direction of the pumping
laser.
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Figure 6: The SPUC and SPDC cross sections plotted against the azimuthal
angle in degrees (upper figure, outgoing wavelength .6µm) and wavelength in
µm (lower figure, outgoing azimuth 180 degrees) for a BBO crystal cut with
its optic axis at 37 degrees to the normal of the incident face. The incident
lasers have wavelengths .442 µm (SPDC) and .845 µm (SPUC)
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Figure 7: The action of a beam splitter
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Figure 8: The recombination experiment. A beam is split at BS1 and recom-
bined at BS2, after reflections at M1 and M2.
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Figure 9: The anticorrelation experiment using SPDC. We count double
coincidences between (D2, D3) and (D2,D4), and also triple coincidences
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Figure 10: Polarization entanglement in noncollinear type II down conver-
sion. The beams 1 and 2, in which the ordinary and extraordinary cones
intersect, are analysed by polarizers P1 and P2.
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